KENDRION

INTOR

POWERED BY KENDRION

Kendrion INTORQ GmbH

Wülmser Weg 5 31855 Aerzen

Postfach 11 03 31849 Aerzen Deutschland

T +49 5154 70534-0 F +49 5154 70534-100

deae-info@kendrion.com www.kendrion.com

Geschäftsführer: Dr. Andreas Laschet Lars Knoke

Characteristic safety values for INTORQ products

Definitions

It is assumed that the INTORQ brake is manufactured according to the series standard and dimensioned to suit the application.

B10, the average number of cycles until 10% of the components have failed (source: DIN EN ISO 13849-1:2016-06).

Brake type	B10*	Version
14.442 to size 14	3,000,000	all catalog versions
14.442 from size 16	2,000,000	without intermediate toothed ring
14.442 from size 16	8,000 ,000	with intermediate toothed ring
BFK454 to size 14	3,000,000	all catalog versions
BFK454 from size 16	2,000,000	without intermediate toothed ring
BFK455	2,000,000	without intermediate toothed ring
BFK455	8,000,000	with intermediate toothed ring
BFK456	3,000,000	all catalog versions
BFK457/458/557 to size 14	3,000,000	all catalog versions
BFK457/458/557 from size 16	2,000,000	without intermediate toothed ring
BFK457/458/557 from size 16	8,000,000	with intermediate toothed ring
BFK458L (longlife)	45,000,000	all catalog versions
BFK557	10,000,000	Use as emergency stop brake
BFK551	3,000,000	all catalog versions
BFK552	3,000,000	all catalog versions
BFK459 to size 14	3,000,000	all catalog versions
BFK459 size 16	3,000,000	without intermediate toothed ring
BFK459 size 16	8,000,000	with intermediate toothed ring
BFK460 to size 14	3,000,000	all catalog versions

Deutsche Bank AG BIC: DEUTDE2HXXX IBAN: DE05 2507 0070 0026 2501 00

Sparkasse Hameln-Weserbergland BIC: NOLADE21SWB IBAN: DE88 2545 0110 0000 8035 69 Commerzbank Hannover BIC: DRESDEFF250, IBAN: DE12 2508 0020 0701 2421 00

HypoVereinsbank BIC: HYVEDEMM300 IBAN: DE71 2003 0000 0010 8508 16 Handelsregister AG Hannover, HRB 220878 UST-ID-Nr. DE 814 222 523

Brake type	B10*	Version
BFK460 from size 16	3,000,000	without intermediate toothed ring
BFK460 from size 16	8,000,000	with intermediate toothed ring
BFK461 to size 14	7,500,000	all catalog versions
BFK461 from size 16	3,000,000	without intermediate toothed ring
BFK461 from size 16	8,000,000	with intermediate toothed ring
BFK464 "holding brakes"	10,000,000	Catalog versions without microswitch
BFK464 "holding brakes"	4,000,000	Catalog versions with microswitch
BFK464 "emergency brakes"	200,000	all catalog versions
BFK466	6,000,000	all catalog versions
BFK468 "holding brakes"	3,000,000	without intermediate toothed ring
BFK468 "holding brakes"	12,000,000	with intermediate toothed ring
BFK470 size 06 - 08 "service brakes"	2,000,000	all catalog versions
BFK470 size 06 - 08 "holding brakes"	3,000,000	all catalog versions
BFK470 size 10 + 12 "service brakes"	3,000,000	without intermediate toothed ring
BFK470 size 10 + 12 "service brakes"	4,000,000	with intermediate toothed ring
BFK470 size 10 + 12 "holding brakes"	3,000,000	without intermediate toothed ring
BFK470 size 10 + 12 "holding brakes"	8,000,000	with intermediate toothed ring
BFK470 size 14 "service brakes"	3,000,000	all catalog versions
BFK470 size 14 "holding brakes"	3,000,000	without intermediate toothed ring
BFK470 size 14 "holding brakes"	8,000,000	with intermediate toothed ring
BFK470 size 16 + 18 "service brakes"	3,000,000	without intermediate toothed ring
BFK470 size 16 + 18 "service brakes"	4,000,000	with intermediate toothed ring
BFK470 size 16 + 18 "holding brakes"	3,000,000	without intermediate toothed ring
BFK470 size 16 + 18 "holding brakes"	8,000,000	with intermediate toothed ring
14.800	3.000.000	all catalog versions
14.105	3.000.000	all catalog versions
14.115	3.000.000	all catalog versions
BFK470 size 06 - 08 "service brakes"	2.000.000	all catalog versions
BFK470 size 06 - 08 "holding brakes"	3.000.000	all catalog versions

* The values given do not take into account the shaft-hub connection to be provided by the customer.

Calculation formulas

Source: DIN EN ISO 13849-1: 2016-06

 $MTTF = \frac{B_{10}}{0.1 \times n_{op}}$

 $n_{op} = \frac{d_{op} \ x \ h_{op} \ x \ 3600 \ \frac{s}{h}}{t_{Zyklus}}$

Based on the following assumptions, which have been made with regard to the application of the component:

 $d_{\mbox{\tiny op....}}$ is the average operating time in days per year

 $h_{\mbox{\tiny op....}}$ is the average operating time in hours per day

 t_{Zyklus} ... is the average time between the start of two successive cycles of the component in seconds per cycle.

huten

By proxy Winfried Küter Global R&D Director (SA) Industrial Brakes

Churidt

By proxy Jan-Oliver Schmidt Authorized representative

Aerzen, 14.01.2021