

INTORQ BFK468

Spring-applied brake with electromagnetic release Translation of the Original Operating Instructions

This documentation applies to ...

Product key

Product key	INTORO I	B FK	
A			
B			
<u>C</u>			
D			
E			

Legend for INTORQ BFK468 product key

Α	Product group	Brakes
В	Product family	Spring-applied brake
C	Туре	468
D	Size	18, 20, 25, 31
E	U U	E - adjustable (brake torque can be reduced via adjuster nut) N - not adjustable

Not coded: Supply voltage, hub bore, options

Identification

Package label		Example	
Manufacturer		Bar code	INTORQ D-Aerzen
Type (see product key)		Type No.	Typ: BFK468-25N Nr. 13336423
Name	Rated torque	Quantity per box	FEDERKRAFTBREMSE 800NM 1 St.
Release/holding voltage	Release/holding power	Packing date	205/103V DC 528/132W 210910
Additional information		CE designation	Rostschutzverpackung-Reibfläche fettfrei halten!

Nameplate		Exampl	e	
Manufacturer		CE designation	INTORQ D-Aerzen	CE
Type (see product key)			BFK468-25N	
Release/holding voltage	Release/holding power	Hub diameter	205/103V DC 528/132 W	65H7
Type No.	Rated torque	Production date	Nr.: 13336423 800 NM	21.09.10

Document history

Material number	Version			Description
13190474	1.0	01/2007	TD09	First edition
33002357	2.0	11/2012	TD09	Complete revision
33002357	3.0	11/2013	TD09	Changed tightening torques of fixing screws, 🖽 16
33002357	4.0	01/2024	IQ	Change of name Kendrion INTORQ, Reduction of the permissible friction work

i Contents

1	Pref	ace and general information	5
	1.1	About these Operating Instructions	5
	1.2	Terminology used	5
	1.3	Conventions used	5
	1.4	Abbreviations used	6
	1.5	Notes used	7
	1.6	Scope of supply	8
	1.7	Disposal	8
	1.8	Drive systems	8
	1.9	Legal regulations	9
2	Safe	ety instructions	10
	2.1	General safety information	10
	2.2	Application as directed	11
3	Tech	nnical data	12
	3.1	Product description	12
	3.2	Brake torques	15
	3.3	Characteristics	16
	3.4	Operating times	18
	3.5	Friction work / operating frequency	19
	3.6	Emission	20
4	Мес	hanical installation	21
	4.1	Necessary tools	21
	4.2	Mounting	22
	4.3	Installation	22
5	Elec	trical installation	29
	5.1	Bridge/half-wave rectifiers (option)	29
	5.2	Electrical connection	31
6	Com	missioning and operation	34
	6.1	Functional test	34
	6.2	Reducing the brake torque	37
	6.3	During operation	38
7	Maiı	ntenance/repair	39
	7.1	Wear of spring-applied brakes	39
	7.2	Inspections	40
	7.3	Maintenance operations	41
	7.4	Spare-parts list	43
	7.5	Spare parts order	44
8	Trou	Ibleshooting and fault elimination	45

1.1 About these Operating Instructions

- These Operating Instructions will help you to work safely on and with the spring-applied brake with electromagnetic release. They contain safety instructions that must be followed.
- All persons working on or with the electromagnetically released spring-applied brakes must have the Operating Instructions available and observe the information and notes relevant for them.
- The Operating Instructions must always be in a complete and perfectly readable condition.

1.2 Terminology used

Term	In the following text used for
Spring-applied brake	Spring-applied brake with electromagnetic release
Drive system	Drive systems with spring-applied brakes and other drive components

1.3 Conventions used

This documentation uses the following conventions to distinguish different types of information:

Numeric notation	Decimal separator	Point	The decimal point is always used. For example: 1234.56
Symbols	Page reference		Reference to another page with additional information For example: 🛄 16 = see page 16
	Document reference	6)	Reference to another documentation with additional information For example: ④ Operating instructions
	Wildcard		Wildcard for options, selections For example: BFK458- $\Box \Box$ = BFK458-10

1.4 Abbreviations used

Letter symbol	Unit	Name
	A	Current
I _H	A	Holding current, at 20 °C and withstand voltage
IL	A	Release current, at 20 °C and release voltage
I _N	A	Rated current, at 20 °C and rated voltage
M _A	Nm	Tightening torque of the fixing screws
M _K	Nm	Characteristic torque of the brake, characteristic value of a relative speed of 100 rpm
n _{max}	rpm	Maximum occurring speed during the slipping time t3
P _H	W	Coil power during holding, at voltage change-over and 20 $^\circ\text{C}$
PL	W	Coil power during release, at voltage change-over and 20 °C
P _N	W	Rated coil power, at rated voltage and 20 °C
Q	J	Quantity of heat/energy
Q _E	J	Maximally permissible friction energy for one-time switching, thermal parameter of the brake
Q _R	J	Braking energy, friction energy
Q _{Smax}	J	Maximally permissible friction energy for cyclic switching, depending on the operating frequency
R _m	N/mm ²	Tensile strength
R _N	Ohms	Rated coil resistance at 20 °C
R _z	μm	Averaged surface roughness
S _h	1/h	Operating frequency, i.e. the number of switching operations evenly spread over the time unit
S _{hue}	1/h	Transition operating frequency, thermal parameter of the brake
S _{hmax}	1/h	Maximally permissible operating frequency, depending on the friction energy per switching operation
SL	mm	Air gap, i.e. lift of the armature plate while the brake is switched
s _{LN}	mm	Rated air gap
S _{Lmin}	mm	Minimum air gap
S _{Lmax}	mm	Maximum air gap
t ₁	ms	Engagement time, sum of the delay time and braking torque rise time t_1 = t_{11} + t_{12}
t ₂	ms	Disengagement time, time from switching the stator until reaching 0.1 $\ensuremath{M}_{\text{rated}}$
t ₃	ms	Slipping time, operation time of the brake (according to $t_{11})$ until standstill
t ₁₁	ms	Delay time during engagement, time from voltage switch-off to the start of torque rise
t ₁₂	ms	Rise time of the braking torque, time from the start of torque rise until reaching the braking torque
t _{ue}	S	Overexcitation time
U	V	Voltage
U _H	V DC	Withstand voltage, during voltage change-over
UL	V DC	Release voltage, during voltage change-over
U _N	V DC	Rated coil voltage; in the case of brakes requiring a voltage change-over, U_{rated} equals U_L

1.5 Notes used

The following pictographs and signal words are used in this documentation to indicate dangers and important information:

Safety instructions

Structure of safety instructions:

Danger!

Characterises the type and severity of danger

Note

Describes the danger

Possible consequences:

List of possible consequences if the safety instructions are disregarded.

Protective measure:

■ List of protective measures to avoid the danger.

Pictogra	ph and signal word	Meaning
	Danger!	Danger of personal injury through dangerous electrical voltage Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
\triangle	Danger!	Danger of personal injury through a general source of danger Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
STOP	Stop!	Danger of property damage Reference to a possible danger that may result in property damage if the corresponding measures are not taken.

Application notes

Pictograph a	and signal word	Meaning
1 N	lote!	Important note to ensure troublefree operation
-`ф́-т	ïp!	Useful tip for simple handling
(kj)		Reference to another documentation

1.6 Scope of supply

After receipt of the delivery, check immediately whether it corresponds to the accompanying papers. INTORQ does not grant any warranty for deficiencies claimed subsequently.

- Claim visible transport damage immediately to the forwarder.
- Claim visible deficiencies / incompleteness immediately to Kendrion INTORQ GmbH

1.7 Disposal

The spring-applied brake consists of different types of material.

- Recycle metals and plastics.
- Ensure professional disposal of assembled PCBs according to applicable environmental regulations.

1.8 Drive systems

Labelling

Drive systems and components are unambiguously designated by the indications on the nameplate.

Manufacturer: Kendrion INTORQ GmbH, Wülmser Weg 5, D-31855 Aerzen

- The spring-applied INTORQ brake is also delivered in single modules and individually combined to its modular design. The data package labels, nameplate, and type code in particular apply to one complete stator.
- If single modules are delivered, the labelling is missing.

INTORQ

1.9 Legal regulations

Liability

- The information, data and notes in this documentation met the state of the art at the time of printing. Claims referring to products which have already been supplied cannot be derived from the information, illustrations and descriptions.
- We do not accept any liability for damage and operating interference caused by:
 - inappropriate use
 - unauthorised modifications to the product
 - improper working on and with the product
 - operating faults
 - disregarding the documentation

Warranty

- Terms of warranty: see terms of sale and delivery of Kendrion INTORQ GmbH
- Warranty claims must be made to INTORQ immediately after detecting defects or faults.
- The warranty is void in all cases where liability claims cannot be made.

2 Safety instructions

2.1 General safety information

- INTORQ components ...
 - ... must only be applied as directed.
 - ... must not be commissioned if they are noticeably damaged.
 - ... must not be technically modified.
 - ... must not be commissioned if they are mounted and connected incompletely.
 - ... must not be operated without the required covers.
 - ... can hold live as well as moving or rotary parts during operation according to their degree of protection. Surfaces may be hot.
- For INTORQ components ...
 - ... the documentation must always be kept at the installation site.
 - ... only permitted accessories are allowed to be used.
 - ... only original spare parts of the manufacturer are allowed to be used.
- All specifications of the corresponding enclosed documentation must be observed.

This is vital for a safe and trouble-free operation and for achieving the specified product features.

Only qualified, skilled personnel are permitted to work on and with INTORQ components.

In accordance with IEC 60364 or CENELEC HD 384, qualified, skilled personnel are persons \ldots

- ... who are familiar with the installation, mounting, commissioning, and operation of the product.
- ... who have the qualifications necessary for their occupation.
- ... who know and apply all regulations for the prevention of accidents, directives, and laws relevant on site.
- Risk of burns!
 - Surfaces may be hot during operation! Provide for protection against accidental contact.
- Risk of injury due to a rotating shaft!
 - Wait until the motor is at standstill before you start working on the motor.
- The friction lining and the friction surfaces must by no means have contact to oil or grease since even small amounts reduce the brake torque considerably.
- The brake is designed for operation under the environmental conditions that apply to IP54. Because of the numerous possibilities of using the brake, it is however necessary to check the functionality of all mechanical components under the corresponding operating conditions.

INTORQ

2 Safety instructions

2.2 Application as directed

- INTORQ components ...
 - ... are intended for use in machinery and systems.
 - ... must only be used for the purposes ordered and confirmed.
 - ... must only be operated under the ambient conditions prescribed in these Operating Instructions.
 - ... must not be operated beyond their corresponding power limits.

Any other use shall be deemed inappropriate!

Possible applications of the INTORQ spring-applied brake

- Humidity: no restrictions
 - In case of formation of condensed water and moisture: provide for appropriate ventilation to ensure that all components will dry quickly.
- Ambient temperature:
 - -20 °C to +40 °C (standard)
- At high humidity and low temperature:
 - Take measures to protect armature plate and rotor from freezing.
- Protect electrical connections against contact.

3.1 **Product description**

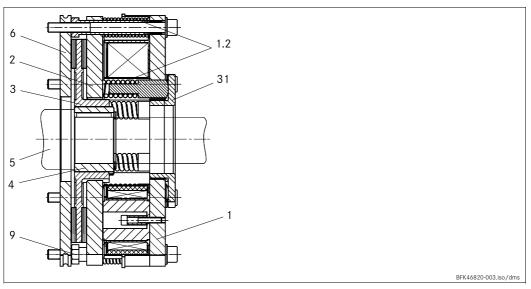


Fig. 1 Design of the BFK468 spring-applied brake: basic module E (complete stator) + rotor + hub + flange

1	Complete stator
1.2	Compression springs
2	Armature plate

1

Complete rotor Hub Shaft

3

4

5

- Flange Sleeve bolts
- 9

6

31 Torque adjustment ring

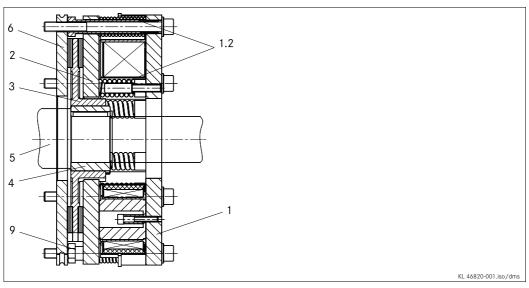


Fig. 2 Design of the BFK468 spring-applied brake: basic module N (complete stator) + rotor + hub + flange

1	Complete stator
1.2	Compression springs

3 Complete rotor Hub 4

5

- 6 Flange 9

- 2 Armature plate
- Shaft
- Sleeve bolts

3.1.1 General information

The spring-applied brake is designed for the conversion of mechanical work and kinetic energy into heat. Due to the static brake torque, the brake can hold loads without speed difference. Emergency braking is possible at high speed. The more friction work, the higher the wear, (operating speeds \square 16).

The BFK468-DD spring-applied brake is a single-disk brake with two friction surfaces. Several compression springs (1.2) generate the braking torque by friction locking. The brake is released electromagnetically by a reduction of the holding current via an INTORQ bridge half-wave rectifier.

The stator (1) is designed to be of thermal class F. The limit temperature of the coils is 155°C.

3.1.2 Braking

During braking the rotor (3) axially slidable on the hub (4) is pressed against the friction surface by the inner and outer springs (1.2) via the armature plate. The asbestos-free friction linings ensure a high braking torque and low wear. The braking torque transmission between hub (4) and rotor (3) is effected by means of toothing.

3.1.3 Brake release

In the braked state, there is an air gap " s_L " between the stator (1) and the armature plate (2). To release the brake, the coil of the stator (1) is excited with the DC voltage provided. The magnetic force generated attracts the armature plate (2) towards the stator (1) against the spring force. The rotor (3) is then released and can rotate freely.

3.1.4 Brake torque reduction

For basic module E (adjustable), the spring force and thus the brake torque can be reduced by unscrewing the adjuster nut (8), (\square 37).

3.1.5 Manual release (optional for sizes 18 to 25)

The manual release is optionally available for short-term releases when no voltage is applied.

3.1.6 Microswitch (optional)

The manufacturer offers the microswitch for air-gap or wear monitoring. The user must provide the corresponding electrical connection (31et seqq.).

When air-gap monitoring, the motor does not start before the brake has been released. With this set-up, all possible faults are monitored. For example, in the event of defective rectifiers, interrupted connection cables, defective coils, or excessive air gaps the motor will not start.

When checking the wear, no current will be applied to the brake and the motor if the air gap is too large.

3.1.7 Encapsulated design (optional)

This design not only avoids the penetration of spray water and dust, but also the spreading of abrasion particles outside the brake. This is achieved by:

- a cover seal over the armature plate and rotor,
- a cover in the adjuster nut,
- a shaft seal in the adjuster nut for continuous shafts (option).

INTORQ

3 Technical data

3.2 Brake torques

Stop!

Please observe that engagement times and disengagement times change depending on the brake torque.

Size	1	8	2	0	2	5	31
	Characterist ic torque	Torque reduction E per detent position	Characterist ic torque	Torque reduction E per detent position	Characterist ic torque	Torque reduction E per detent position	Characterist ic torque
	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]
					230 N		
Rated torques [Nm],	100 N/E	6.4	170 N/E	19.8	260 N/E	16.5	
relating to the relative speed $\Delta n =$	115 N/E	6.4	200 N/E	19.8	300 N/E	8.2	720 N
100 rpm	130 N/E	6.4	230 N/E	9.9	350 N/E	8.2	960 N
Depending on the	150 N/E	3.2	260 N/E	9.9	400 N/E	8.2	1200 N
rated torque (spring assembly), the angle	165 N/E	3.2	300 N/E	19.8	445 N/E	16.5	1440 N
of rotation for the	185 N/E	6.4	345 N/E	19.8	490 N/E	8.2	1680 N
braking torque reduction can be	200 N/E	6.4	400 N/E	19.8	520 N/E	16.5	1920 N
60°, 120° or 180°	235 N/E	6.4	440 N/E	19.8	600 N/E	16.5	2160 N
for basic module E.	265 N/E	6.4	480 N/E	19.8	700 N/E	16.5	2400 N
	300 N/E	6.4	520 N/E	19.8	800 N/E	16.5	

Tab. 1 N.....Brake torque for module N (without torque adjustment ring) E......Brake torque for module E (with torque adjustment ring)

Holding brake with emergency stop operation (s_{L max.} approx. 2.0 x s_{LN}) Service brake (s_{L max.} approx. 4.0 x s_{LN}) Standard braking torque

3.2.1 Basic module E, brake torque reduction

For basic module E, the braking torque can be reduced by means of the torque adjustment ring in the stator. The torque adjustment ring must only be screwed out up to the maximum projection " h_{Emax} ", \square 16 and \square 37.

3.2.2 Brake torques depending on the speed and permissible limit speeds

Туре	Rated torque at ∆n = 100 rpm	Braking torque at Δn_0 [rpm] [%]			max. speed Δn _{0max.} with horizontal mounting position
	[%]	1500	3000	maximum	[rpm]
BFK468-18		77	70		4400
BFK468-20	100	75	68	· · ·	3700
BFK468-25	100	73	66	66	3000
BFK468-31		69			on request

Tab. 2 Brake torques depending on the speed and permissible limit speeds

3.3 Characteristics

Туре	s _{LN} +0.1 mm -0.05 mm	s _{L max.} service brake	s _{Lmax.} holding brake	Max. adjustment, permissible wear distance	Rotor th	ickness	Excess of the torque adjustment ring h _{Emax} .
	[mm]	[mm]	[mm]	[mm]	min. ¹⁾ [mm]	max. [mm]	[mm]
BFK468-18	0.4	10	0.6	3.0	10.0	13.0	15
BFK468-20	04	1.05		4.0	12.0	16.0	17
BFK468-25	0.5	1 25	0.75	4.5	15.5	20.0	19.5
BFK468-31	0 5	1.5	1.0	3.0	15.0	18.0	

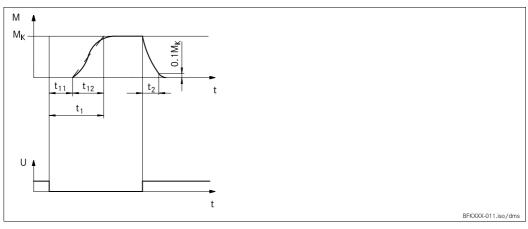
1) The friction lining is designed such that the brake can be adjusted at least 5 times.

		Tightening torque		Weight of complete stator
[mm]	Thread	Screws [Nm]	Complete lever [Nm]	[kg]
196	6 x M8	24.6	23	13.4
230	(M10	10	40	20.0
278	6 X MI U	48	40	31.0
360	8 x M16	206		55.1
	196 230 278	196 6 x M8 230 6 x M10	196 6 x M8 24.6 230 6 x M10 48	Image: 196 6 x M8 24.6 23 230 6 x M10 48 40 -

Tab. 3 Characteristics of BFK468 spring-applied brake

Туре	Electrical power P ¹⁾	Release voltage/holding voltage U	Coil resistance $R_{N}\pm\!8$ %
	[W]	[V]	[Ω]
	05 / 040	205 / 103	123.5
BFK468-18	85 / 340	360 / 180	381.5
BFK468-20 100 / 408	100 / 100	205 / 103	106.1
	100 / 408	360 / 180	317.6
	100 / 500	205 / 103	79.6
BFK468-25	132 / 528	360 / 180	245.5
BFK468-31	230 / 920	360 / 180	140.9

1) Coil power at 20 °C


Tab. 4 Coil voltage/coil resistance of BFK468

3.3.1 Project planning notes

- The brakes are dimensioned in such a way that the given characteristic torques are reached safely after a short run-in process.
- Due to the fluctuating properties of the organic friction linings used and the alternating environmental conditions, deviations of the given braking torques may occur. These must be considered by corresponding safety measures in the dimensioning process. Especially with humidity and alternating temperatures, an increased breakaway torque may occur after a long downtime.
- If the brake is used as a pure holding brake without dynamic load, the friction lining must be reactivated regularly.

17

3.4 Operating times

t₁₁

t₁₂

U

Fig. 3 Operating times of the spring-applied brakes

- t₁ Engagement time
- t_2 Disengagement time (up to M = 0.1 M_r)
- M_K Characteristic torque

Reaction delay during engagement Rise time of the brake torque Voltage

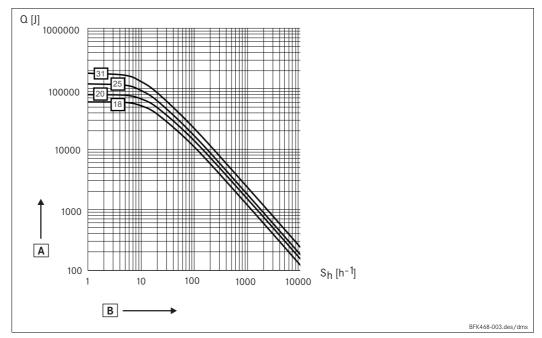
Туре	Rated torque at ∆n = 100 rpm	Max. permissible friction work per operation only	Transition operating frequency	Op	perating tin	nes [ms] a	t s _{LN}
	M _K ¹)	Q _E	s _{hue}	DC	engagem	ent	Disengage
	[Nm]	[1]	[h ⁻¹]	t ₁₁	t ₁₂	t ₁	t ₂
BFK468-18	150	60000	20	26	30	56	70
BFK468-20	260	80000	19	102	112	168	106
BFK468-25	400	120000	15	60	135	197	120
BFK468-31	1200	120000 2)	13	65	133	198	250

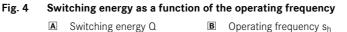
Minimum braking torque when all components are run in
 Tab. 5 Switching energy - operating frequency - operating times

2) at max. speed and max. friction work only 100 emengency stopps possible

Engagement time

The transition from brake-torque free state to holding braking torque is not free of time lags.


A braking torque reduction via the torque adjustment ring prolongs the engagement time and reduces the disengagement time.


- The engagement times are valid for **DC switching** with a spark suppressor.
 - Spark suppressors are available for the rated voltages.
 - Connect the spark suppressors in parallel to the contact. If this is not admissible for safety reasons, e.g. with hoists and lifts, the spark suppressor can also be connected in parallel to the brake coil.
 - Circuit proposals: 🛄 31, Fig. 15
- The engagement times are approx. 5 times longer with **AC switching**.
 - Connection: 🕮 31, Fig. 14

Disengagement time

The disengagement time is the same for DC and AC switching.

3.5 Friction work / operating frequency

$$S_{hmax} = \frac{-S_{hue}}{\ln \left(1 - \frac{Q_R}{Q_E}\right)} \qquad Q_{smax} = Q_E \left(1 - e^{\frac{-S_{hue}}{S_h}}\right)$$

The permissible operating frequency S_{hmax} depends on the quantity of heat Q_R (see Fig. 4). If the operating frequency S_h is specified, the permissible quantity of heat Q_{smax} will result.

With high speed and friction work, the wear increases strongly, because very high temperatures occur at the friction faces for a short time.

3.6 Emission

Electromagnetic compatibility

1 Note!

The user must ensure compliance with EMC Directive 2004/108/EC using appropriate controls and switching devices.

If an INTORQ rectifier is used for the DC switching of the spring-applied brake and if the operating frequency exceeds five switching operations per minute, the use of a mains filter is required.

If the spring-applied brake uses a rectifier of another manufacturer for the switching, it may become necessary to connect a spark suppressor in parallel with the AC voltage. Spark suppressors are available on request, depending on the coil voltage.

Heat

Since the brake converts kinetic energy as well as mechanical and electrical energy into heat, the surface temperature varies considerably, depending on the operating conditions and possible heat dissipation. Under unfavourable conditions, the surface temperature can reach 130 $^{\circ}$ C.

Noise

The switching noise during engagement and disengagement varies depending on the air gap "s_L" and the brake size.

Depending on the natural oscillation after installation, operating conditions and state of the friction faces, the brake may squeak during braking.

Others

The abrasion of the friction parts produces dust.

Stop!

Toothed hub and screws must not be lubricated with grease or oil!

4.1 Necessary tools

Туре	Insert for he	ie key xagon socket ews	Wrench size	of open-jawed s	panner [mm]	Hook wrench DIN 1810 design A	Box spanner for flange installation, outside
		Å.		Manual release		\sim	
	Measuring range [Nm]	Wrench size [mm]	Sleeve bolts	Nuts / bolts	2kt lever	Diameter [mm]	Wrench size [mm]
BFK468-18		6 x ¹ / ₂ " square	15		10	110 - 115	13 x ¹ / ₂ " square
BFK468-20	20 - 100	8 x ¹ / ₂ "	17	- / 10	12	135 - 145	17 x ¹ / ₂ "
BFK468-25		square	17		14	155 - 165	square
BFK468-31	40 - 200	14 x ¹ / ₂ " square	24	-/-			24 x ¹ / ₂ " square

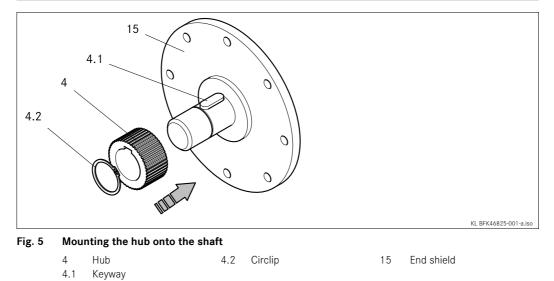
for flange mounting insertion with journal guide

Feeler gauge	Caliper gauge	Multimeter

4.2 Mounting

4.2.1 Preparation

- 1. Unpack spring-applied brake.
- 2. Check for completeness.
- 3. Check nameplate data, especially rated voltage.


4.3 Installation

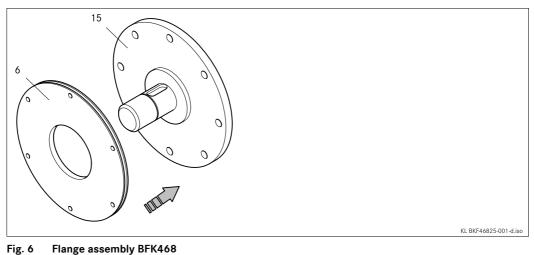
When you have ordered a version with manual release or flange, attach these units first.

4.3.1 Installation of the hub onto the shaft

In reverse operation, it is recommended to additionally glue the hub to the shaft!

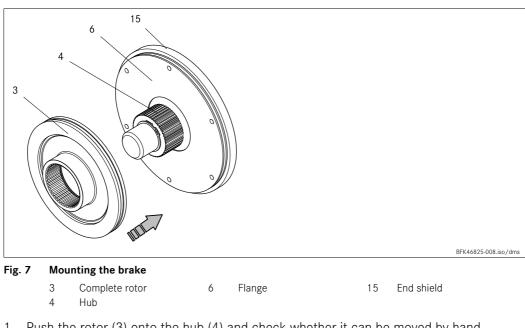
- 1. Press hub (4) onto the shaft.
- 2. Secure hub against axial displacement, e.g. using a circlip (4.2).

INTORQ


4.3.2 Installation of the brake

■ Minimum requirement of the end shield (15):

- Material S235 JR or C15 (other materials after consultation with INTORQ),
- Levelness 0.10 mm,
- Axial runout 0.10 mm,
- Roughness Rz 10 to Rz 16
- When dimensioning the thread depth in the end shield (15), the permissible wear distance must be taken into consideration, □ 16.
- Condition of the end shield (15):
 - $-\operatorname{It}$ has to be free of grease and oil.

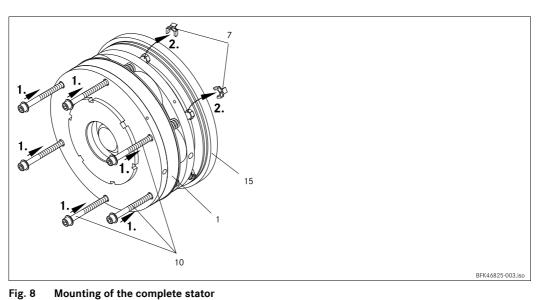

Mounting the flange without additional screws

6 Flange

15 End shield

1. Hold the flange (6) against the end shield (15) and check the pitch circle and retaining screw drill hole threading.

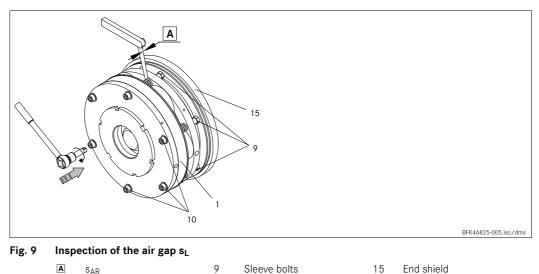
1. Push the rotor (3) onto the hub (4) and check whether it can be moved by hand (Fig. 7).



Stop!

Please note the following for the version "brake with shaft sealing ring in torque adjustment ring":

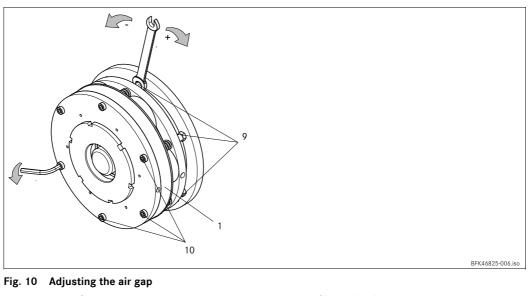
- 2. Lightly lubricate the lip of the shaft seal with grease.
- 3. When assembling the stator (1), push the shaft sealing ring carefully over the shaft.
 - The shaft should be located concentrically to the shaft seal.


INTORQ

1 Complete stator

10 Cheese head screw

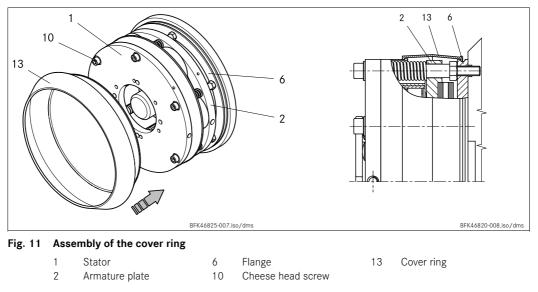
- 7 Connector block15 End shield
- 4. Screw the complete stator (1) onto the end shield (15) using the set of screws (10) provided and a torque key, (tightening torque 🛄 16).

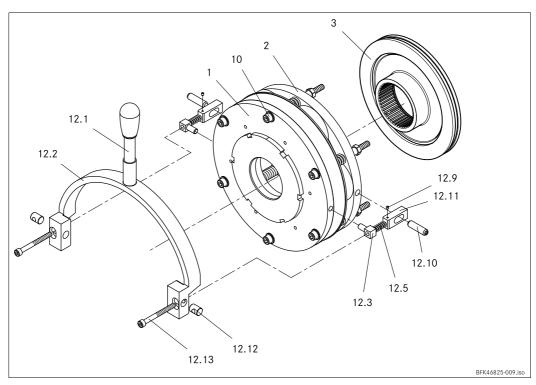

- Image: state9Sleeve bolts15End shield1Stator10Cheese head screws
- 1. Check the air gap near the screws (10) by means of a feeler gauge and compare the values to the values for " s_{LN} " in the table (\square 16).

Note!

Do not insert feeler gauge more than 10 mm between armature plate (2) and stator (1.1)!

25


4 Mechanical installation


1 Stator 9 Threaded sleeves 10 Cheese head screw

If the measured value $"s_{\text{L}}"$ is outside the tolerance of $"s_{\text{LN}}",$ set the dimension:

4.3.3 Assembly of the cover seal

- 1. Pull the cable through the seal (13).
- 2. Push the seal (13) over the complete stator (1).
- Press the lips of the cover seal (13) into the groove of complete stator (1) and flange (6)/end shield.

4.3.4 Assembly of the manual release sizes 18 to 25

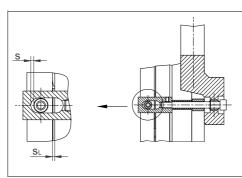
Fig. 12 Assembly of the manual release for brake sizes 18-25

1	Stator (here: design E)	12.1	Manual release lever with control button	12.10	Pin
2	Armature plate	12.2	Manual release shackle	12.11	Clip
3	Complete rotor	12.3	Eyebolts	12.12	Trunnion
10	Cheese head screw	12.5	Compression spring		

Stop!

Before assembly of the manual release, the brake must be mounted onto the motor end shield and the air gap must be adjusted correctly, (G) further documentation for BKF468.

- 1. Hammer the pins (12.10) into the bore holes of the armature plate (2). (When the brake has already been installed, cushion the impact energy by pressing against the opposite side of the armature plate).
- 2. Screw the eyebolts (12.3) into the stator (1) and align them according to the hole spacing of the manual release shackle (12.2).
- 3. Put clips (12.11) with elongated hole onto the pins (12.10), align thread towards the eyebolts (12.3).
- 4. Insert the compression springs (12.5) between clips (12.11) and eyebolts (12.3).
- 5. Push the trunnions (12.12) into the bore holes of the shackle (12.2), cross hole to the outside.


27

- 6. Push the cheese head screws (12.13) through the cross holes of the trunnions (12.12).
- 7. Locate the shackle (12.2) with trunnions (12.12) and cheese head screws (12.13) such onto the back of the stator (1) that the cheese head screws (12.13) are led through the eyebolts (12.3) and the compression springs (12.5).
- 8. Screw the cheese head screws (12.13) into the clip threads (12.11).
- 9. Adjust gap "s" using the cheese head screws (12.13), (values for "s " 💷 28.
- 10. Secure the adjustment of the cheese head screws (12.13) using the threaded pin (12.9) in the clip (12.11).

1 Note!

Dimension "s + s_L " can be checked through the difference of the fitting length of the compression springs when the armature plate is attracted towards the stator and the manual release has been adjusted.

11. If necessary, screw the lever (12.1) into the shackle (12.2).

s _L (mm)	s + ^{0.1} (mm)	s + s _L (mm)
0.4	2.0	2.4
0.4	2.0	2.4
0.5	2.5	3.0
	0.4	0.4 2.0 0.4 2.0

BFK46820-006.isc

Tab. 6 Adjustment setting for manual release

STOP Stop!

Dimension "s" must be observed! Check air gap "s_L".

5 Electrical installation

5.1 Bridge/half-wave rectifiers (option)

BEG-561-000-000

Bridge/half-wave rectifiers are used for the supply of electromagnetic spring-applied DC brakes which have been released for operation with such rectifiers. Any other use is only permitted with the explicit written approval of INTORQ.

Once a set overexcitation time has elapsed, the bridge/half-wave rectifiers switch over from bridge rectification to half-wave rectification.

Terminals 3 and 4 are located in the DC circuit of the brake. The induction voltage peak for DC switching (see "DC switching - fast engagement" circuit diagram) is limited by an integrated overvoltage protection at terminals 5 and 6.

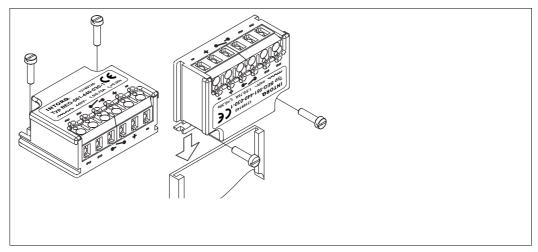
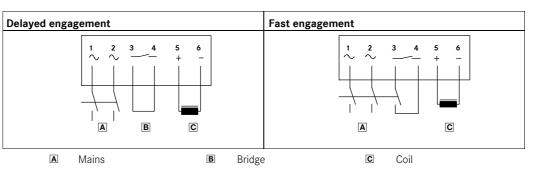


Fig. 13 BEG-561 attachment features

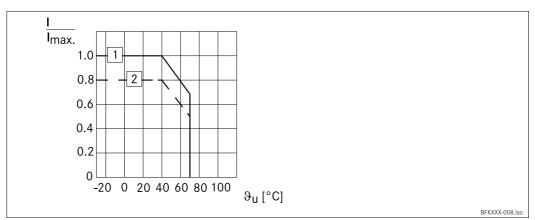
5.1.1 Technical data

Rectifier type	Bridge/half-wave rectifier
Output voltage for bridge rectification	0.9 x U ₁
Output voltage for half-wave rectification	0.45 x U ₁
Ambient temperature (storage/operation) [°C]	-25 +70

Туре	Input voltage U ₁ (40 Hz 60 Hz)		Max. current I _{max.}		Overexcitation time t_{ue} (±20%)			
	min. [V ~]	rated [V ~]	max. [V ~]	bridge [A]	half-wave [A]	with U _{1 min} [s]	with U ₁ _{rated} [s]	with U ₁ _{max} [s]
BEG-561-255-030	160	230	255	3.0	1.5	0.430	0.300	0.270
BEG-561-255-130						1.870	1.300	1.170
BEG-561-440-030-1	230	400	440	1.5	0.75	0.500	0.300	0.270
BEG-561-440-130				3.0	1.5	2.300	1.300	1.200


Input voltage U₁ (40 ... 60 Hz)

Tab. 7 Data for bridge/half-wave rectifier type BEG-561


5 Electrical installation

5.1.2 Reduced switch-off times

When switching on the DC side (fast engagement), switching on the AC side is also required! Otherwise, there will be no overexcitation during power-on.

5.1.3 Permissible current load - ambient temperature

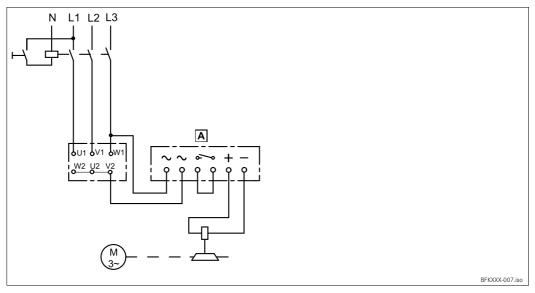
1 For screw assembly with metal surface (good heat dissipation)

2 For other assembly (e.g. glue)

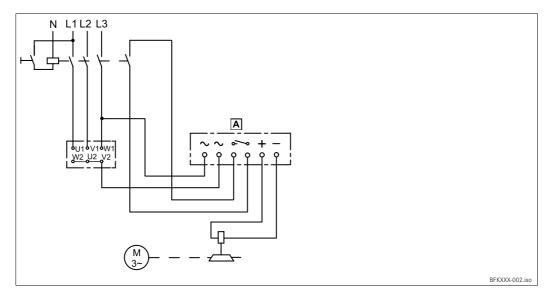
5.1.4 Assignment: Bridge/half-wave rectifier - brake size

Rectifier type	AC voltage	Coil voltage release/holding	Assigned brake
	[V AC]	[V DC]	
BEG-561-255-030	230 ^{±10%}	205 / 103	BFK468-18 BFK468-20
BEG-561-255-130			BFK468-25
BEG-561-440-030-1	400 ±10%	360 / 180	BFK468-18 BFK468-20
BEG-561-440-130			BFK468-25 BFK468-31

INTORQ


5 Electrical installation

5.2 Electrical connection


The brake must only be electrically connected when no voltage is applied!

5.2.1 Circuit proposals

Fig. 14 AC switching, delayed engagement

A Bridge rectifier/half-wave rectifier

Fig. 15 DC switching, normal engagement

A Bridge rectifier/half-wave rectifier

Stop!

STOP

For switching on the DC side the brake must be operated with a spark suppressor to avoid impermissible overvoltages.

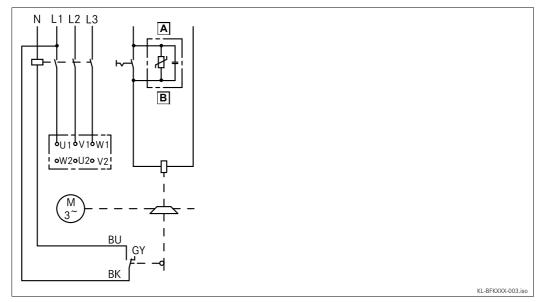


Fig. 16 With microswitch (release check); connection diagram also valid for star connection

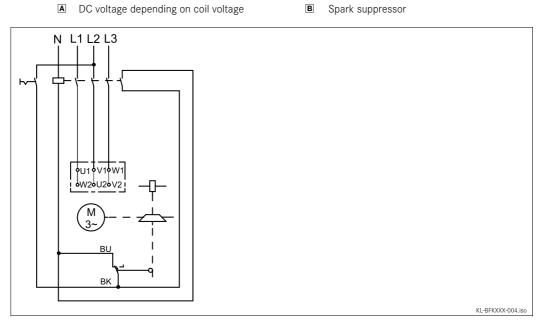


Fig. 17 With microswitch / wear check addition for all circuits; connection diagram also valid for star connection

5 Electrical installation

-``@`-

Tip! During opera

During operation according to Fig. 17 the air gap is only monitored when no voltage is applied to the brake. This makes sense because it is possible that when the current flows only one side of the armature plate is attracted at first. This misalignment may cause a simulation of the maximum air gap and the actuation of the microswitch. If there is no closed contact in parallel to the microswitch contact, motor and brake will be switched off. The microswitch contact is closed again when the armature plate is completely released - the release is repeated again - because of the small difference-contact travel of the microswitch.

To avoid this misinterpretation of the microswitch signal, the signal should only be processed when no voltage is applied to the brake.

- 1. Mount the rectifier in the terminal box. With motors of the insulation class "H", mount the rectifier in the control cabinet. Permissible ambient temperature for the rectifier -25 °C to +70 °C.
- 2. Compare the coil voltage of the stator to the DC voltage of the rectifier installed. Conversion of supply voltage to DC voltage:
 - Bridge rectifier: $U_{DC} = U_{AC} \bullet 0.9$
 - Half-wave rectifier: $U_{DC} = U_{AC} \bullet 0.45$
 - Permissible deviation of U_{coil} and U_{DC} up to $\pm 10\%$
- 3. Select suitable circuit diagram (31).

Note!

Selection of the rectifier at voltages \ge 460 V AC \bigcirc catalogue "Electronic switchgear and accessories" Chapter spark suppressors and rectifiers.

4. Motor and brake must be wired according to the requirements of the engagement time.

6 Commissioning and operation

The live connections and the rotating rotor must not be touched. The drive must not be running when checking the brake.

6.1 Functional test

In the event of failures, refer to the troubleshooting table, \Box 45. If the fault cannot be eliminated, please contact the aftersales service.

6.1.1 Release / voltage check

For brakes without microswitch only

Danger!

The brake must be free of residual torque. The motor must not rotate.

Live connections must not be touched.

- Remove two bridges from the motor terminals. Do **not** switch off the DC brake supply. When connecting the rectifier to the neutral point of the motor, the PE conductor must **also** be connected to this point.
- 2. Connect the mains supply.
- 3. Measure the DC voltage at the brake.
 - Compare the DC voltage measured with the voltage specified on the nameplate. A 10 % deviation is permissible.
- 4. Check air gap "s_L". It must be zero and the rotor must rotate freely.
- 5. Switch off the current.
- 6. Bolt bridges to the motor terminals. Remove additional PEN conductor.

6.1.2 Microswitch - release check

Danger!

The brake must be free of residual torque. The motor must not rotate.

Commissioning and operation

INTORQ

h Danger!

6

Live connections must not be touched.

- 1. The switching contact for the brake must be open.
- 2. Remove two bridges from the motor terminals to deenergise the motor.
 - Do not switch off the DC brake supply.
 - When connecting the rectifier to the neutral point of the motor, the PE conductor must also be connected to this point.
- 3. Apply DC voltage to the brake.
- 4. Measure the AC voltage at the motor terminals. It must be zero.
- 5. Close the switching contact for the brake.
 - The brake is released.
- 6. Measure the DC voltage at the brake:
 - Compare the DC voltage measured with the voltage specified on the nameplate. A ± 10 % deviation is permissible.
- 7. Check air gap "s_{L"}.
 - It must be zero and the rotor must rotate freely.

6.1.3 Microswitch - wear check

Danger!

The brake must be free of residual torque. The motor must not rotate.

6 Commissioning and operation

Live connections must not be touched.

- 1. Remove two bridges from the motor terminals. Do not switch off the DC voltage for the brake. When connecting the rectifier to the neutral point of the motor, the PE conductor must also be connected to this point.
- 2. Set air gap to "s_{Lmax.}". Description 🕮 23 worksteps 8-11.
- 3. Connect the mains supply.
- 4. Measure the AC voltage at the motor terminals and the DC voltage at the brake. Both must be zero.
- 5. Switch off the current.
- 6. Set air gap to "s_{LN}". Description 🕮 23 worksteps 8-11.
- 7. Connect the mains supply.
- 8. Measure the AC voltage at the motor terminals. It must be the same as the mains voltage.
- 9. Measure the DC voltage at the brake.
 - The DC voltage measured after the overexcitation time (see bridge/half-wave rectifier) must be half the voltage indicated on the nameplate. A 10 % deviation is permissible.
- 10. Check air gap "s_L". It must be zero and the rotor must rotate freely.
- 11. Switch off the current for the brake.
- 12. Bolt bridges to the motor terminals. Remove additional PEN conductor.

6.1.4 Manual release

Stop!

This operational test is to be carried out additionally!

Commissioning and operation

INTORQ

Danger!

The brake must be free of residual torque. The motor must not rotate.

1. Pull the lever (Fig. 18) with approx. 250 N until the resistance increases strongly.

6

Stop!

Additional tools to facilitate brake release are not allowed! (e.g. extension piece)

- 2. The rotor must rotate freely. Small residual torques are permissible.
- 3. Release the lever.

6.2 Reducing the brake torque

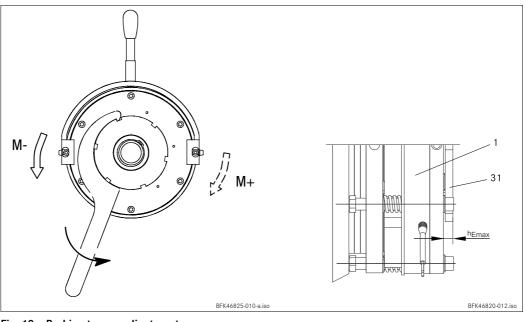


Fig. 18 Braking torque adjustment

> 1 Stator

Torque adjustment ring 31

6 Commissioning and operation

- 1. Turn the adjuster nut (8) counterclockwise using the hook wrench.
 - Observe the notches. Positions between notches are impermissible. (Values for the brake torque reduction see chapter 3.2.1).
 - The maximum permissible projection " $h_{Emax.}$ " of the adjuster nut (8) to the stator (7) is to be observed (values for " $h_{Emax.}$ " see chapter 3.3).

Danger!

The reduction of the brake torque does not increase the maximum permissible air gap $"s_{\mbox{Lmax.}}".$

Do not change the manual release setting for models with manual release.

6.3 During operation

- Check the brake regularly during operation. Take special care of:
 - unusual noises or temperatures
 - loose fixing elements
 - the condition of the electrical cables.
- The armature plate must be attracted and the drive must move without residual torque.
- Measure the DC voltage at the brake.
 - Compare the DC voltage measured with the voltage specified on the nameplate. A ± 10 % deviation is permissible.

7.1 Wear of spring-applied brakes

The following table describes the different causes of wear and their effects on the components of the spring-applied brake. The important influencing factors must be quantified so that the service life of the rotor and brake can be calculated and that the maintenance intervals to be prescribed can be specified precisely. The most important factors in this context are the applied friction energy, the initial speed of braking and the operating frequency. If several of the causes of friction lining wear occur in an application at the same time, the influencing factors are to be added together when the amount of wear is calculated.

Component	Cause	Effect	Influencing factors	
Friction lining	Braking during operation			
	Emergency stops			
	Overlapping wear during start and stop of drive		Friction work	
	Active braking via the drive motor with support of brake (quick stop)	Wear of friction lining		
	Starting wear in case of motor mounting position with vertical shaft, even when the brake is not applied		Number of start/stop cycles	
Armature plate and counter friction face	Rubbing of brake lining	Run-in of armature plate and counter friction face	Friction work	
Brake support	Load alternation and jerks in the backlash between armature plate, sleeve bolts and guide bolt	Breaking of armature plate, sleeve bolts and guide bolt	Number of start/stop cycles, braking torque	
Springs	Axial load cycle and shear stress of springs through radial backlash on reversal of armature plate	Reduced spring force or fatigue failure	Number of switching operations of brake	

7.2 Inspections

7.2.1 Important notes

To ensure safe and trouble-free operation, spring-applied brakes must be checked and maintained at regular intervals. Servicing can be made easier if good accessibility of the brakes is provided in the plant. This must be considered when installing the drives in the plant.

Primarily, the necessary maintenance intervals for industrial brakes result from the load during operation. When calculating the maintenance interval, all causes for wear must be taken into account, (\square 39). For brakes with low loads such as holding brakes with emergency stop, we recommend a regular inspection at a fixed time interval. To reduce the cost, the inspection can be carried out along with other regular maintenance work in the plant if necessary.

If the brakes are not maintained, failures, production losses or damage to the system may occur. Therefore, a maintenance concept adapted to the particular operating conditions and brake loads must be defined for every application. For the spring-applied brakes, the maintenance intervals and maintenance operations listed in the below table must be provided. The maintenance operations must be carried out as described in the detailed descriptions.

Danger!

The live connections and the rotating rotor must not be touched. The drive must not be running when checking the brake.

7.2.2 Checking the rotor thickness

- 1. Remove the motor cover and seal ring, if mounted.
- 2. Measure the rotor thickness using a caliper gauge.
- 3. Compare the measured rotor thickness with the minimally permissible rotor thickness, (D 16).
- 4. If required, replace rotor completely, (42).

7.2.3 Checking the air gap

Danger!

Disconnect the drive from the load to prevent accidents. During the next inspection steps of the spring-applied brake, the motor must <u>not</u> run!

- 1. Check the air gap "s_L" near the fixing screws between the armature plate and stator using a feeler gauge (\square 16).
- 2. Compare air gap measured to maximally permissible air gap "s_{L max.}" (Ш 16).
- 3. If required, set air gap to " s_{LN} " (\square 41).

7.2.4 Release / voltage

The running rotor must not be touched.

Danger!

Live connections must not be touched.

7.3 **Maintenance operations**

7.3.1 Adjusting the air gap

Danger!

The brake must be free of residual torque.

STOP Stop!

Please observe when mounting the flange with additional screws:

Behind the threaded holes for the screws in the flange there must be clearing holes in the endshield. Without clearing holes the minimum rotor thickness cannot be used. Under no circumstances may the screws be pressed against the endshield.

- 1. Unbolt screws (Fig. 10).
- 2. Screw the threaded sleeves into the stator by using a spanner. 1/6 revolution reduces the air gap by approx. 0.15 mm.
- 3. Tighten screws, torques 🛄 16.
- 4. Check air gap "s_L" near the screws using a feeler gauge, "s_{LN}" \square 16.
- 5. If the difference between the measured air gap and "s_{LN}" is too large, repeat the readjustment.

7.3.2 Rotor replacement

Danger!

The brake must be free of residual torque.

- 1. Switch off voltage!
- 2. Disconnect the supply cable.
- 3. Loosen the screws evenly and remove them completely.
- 4. Remove the complete stator from the end shield. Observe the supply cable.
- 5. Pull the complete rotor off the hub.
- 6. Check hub teeth.
- 7. Replace the hub as well if worn.
- 8. Check the friction surface at the end shield. In case of strong scoring at the flange, replace the flange. If scoring occurs at the end shield, re-finish end shield.
- 9. Measure rotor thickness (new rotor) and sleeve bolt head with a caliper gauge.
- 10. Calculate the gap between the stator and the armature plate as follows:

Gap = rotor thickness + s_{LN} - head height

"s_{LN}" □ 16

- 11. Unscrew the sleeve bolts evenly until the calculated gap between stator and armature plate is reached.
- 12. Install and adjust new rotor and stator, 🛄 23.
- 13. Reconnect the supply cable.

INTORQ

7 Maintenance/repair

7.4 Spare-parts list

- Only parts with item numbers are available.
 - The item numbers are only valid for the standard design.
- Please include the following information with the order:
 - Order number of the brake
 - Position number of the spare part

7.4.1 Brakes BFK468-18 to 31

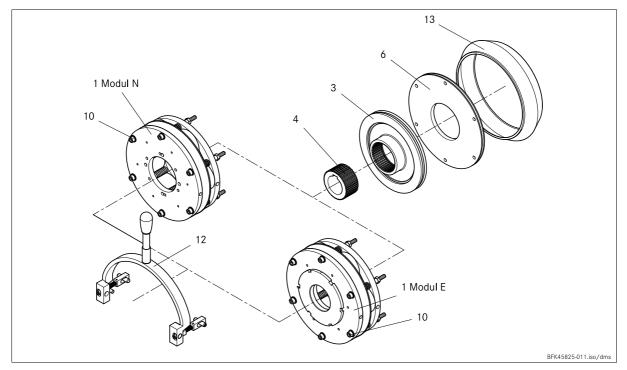


Fig. 19 BFK468-18 spring-applied brake to 31

Pos.	Name	Variant
1	Complete stator, module E Complete stator, module N	Voltage / braking torque
3	Complete rotor Complete rotor, noise-reduced	
4	Hub	Bore
6	Flange Hartchromed flange	
10	Set of fastening screws Cheese head screw DIN 912	for mounting to the motor for flange with through hole
12	Manual release	
13	Cover ring	

7.5 Spare parts order

INTORQ BFK468-				
Size	□ 18	□ 20	□ 25	□ 31
Design:	 E (with adjuster nut, sizes 18, 20,25) N (without adjuster nut) 			
Voltage	 205 V / 103 V (not available for size 31) 360 V / 180 V 			
Brake torque	Nm (see torque ranges)			
Cable length	□ Standard	_mm	、	n to 1000 mm in 100 mm steps, m to 2500 mm in 250 mm steps)
Manual release mounted	\Box (not available for size 31)			
Armature plate	□ Standard		□ Harde	hromed
Microswitch Switching noises	MonitoriWear moLow-noi	onitoring	operation	

Accessories

Rotor	□ Aluminiu	m	□ Noise-reduced (rotor with sleeve)
Hub		mm (for hole	e diameter see dimensions)
Flange			
Fixing screw set	□ For mour	nting to the m	notor
	□ For mour	nting to the fl	ange with through holes
Sealing	□ Cover rin	g	
	□ Shaft sea	al (shaft diam	eter on request)
	🗆 Cap		
Brake cover	□ 18	□ 20	□ 25

Electrical accessories

Rectifier type	AC voltage	Coil voltage release/holding	Assigned brake
	[V AC]	[V DC]	
BEG-561-255-030	230 ^{±10%}	205 / 103	BFK468-18 BFK468-20
BEG-561-255-130			BFK468-25
BEG-561-440-030-1	400 ±10%	260 / 180	BFK468-18 BFK468-20
BEG-561-440-130		360 / 180	BFK468-25 BFK468-31

Troubleshooting and fault elimination

8

If any malfunctions should occur during operation, please check the possible causes using the following table. If the fault cannot be eliminated by one of the listed measures, please contact the aftersales service.

Fault	Cause	Remedy
Brake does not release	Coil interruption	 Measure coil resistance using multimeter: If resistance is too high, replace the complete stator.
	Coil has interturn fault or short circuit to ground	 Measure coil resistance using multimeter: Compare measured resistance to rated resistance. For values, see II 16. If the resistance is too low, replace the complete stator. Check coil for short circuit to ground using a multimeter: Replace the complete stator if short circuit to ground is detected. Check brake voltage (see "defective rectifier, voltage too low").
	Wiring incorrect or defective	 Check and correct wiring. Check cable continuity using a multimeter: Replace defective cable.
	Rectifier defective or wrong	 Measure rectifier DC voltage using a multimeter. If DC voltage is zero: Check AC rectifier voltage. If AC voltage is zero: Apply voltage, check fuse, check wiring If AC voltage is ok: Check rectifier replace defective rectifier Check coil for fault between turns and short circuit to ground. If the rectifier defect occurs again, replace the complete stator, even if no fault between turns or short circuit to ground can be detected. The fault may only occur when warm.
	Incorrect microswitch wiring	Check microswitch wiring and correct it.
	Incorrect microswitch setting	Replace the complete stator and complain about the incorrect microswitch setting to the manufacturer.
	Air gap too big	Adjust air gap (41) Measure rotor thickness and compare with minimum rotor thickness (16). If necessary, replace rotor.
Rotor cannot rotate freely	Wrong setting of manual release	Check dimension "s+s _L " with energised brake. The dimension must be identical on both sides. Correct if necessary.
	Air gap "s _L " too small	Check air gap "sl" and, if required, readjust it (

8 Troubleshooting and fault elimination

Fault	Cause	Remedy	
Rotor not thick enough	Rotor has not been replaced in time	Replace rotor (🖽 42)	
Voltage is not zero during functional	Incorrect wiring of microswitch	Check and correct the microswitch wiring.	
test (chapter 6.1)	Defective microswitch or incorrect setting	Replace the entire stator and send the defective stator to the manufacturer.	
Voltage too high	Brake voltage does not match the rectifier	Adapt rectifier and brake voltage to each other.	
Voltage too low	Brake voltage does not match the rectifier	Adapt rectifier and brake voltage to each other.	
AC voltage is not mains voltage	Fuse missing or defective	Select a connection with proper fusing.	
	Incorrect wiring of microswitch	Check the microswitch wiring and correct it.	
	Defective microswitch or incorrect setting	Replace the entire stator and send the defective stator to the manufacturer.	

Notes

- Kendrion INTORQ GmbH Germany
 - PO Box 1103
 - D-31849 Aerzen, Germany

Wülmser Weg 5

D-31855 Aerzen, Germany

- +49 5154 70534-0 (central) +49 5154 70534-222 (sales)
- info-aerzen-ib@kendrion.com
- 📫 康德瑞恩电磁科技(中国)有限公司

Kendrion (China) Co., Ltd. 苏州工业园区恵浦路10号 #10 Huipu Road Suzhou Industrial Park 215021 Suzhou City P.R. China China

- +86 512 8398 1819
- ≣ sales-china@kendrion.com
- Kendrion (Atlanta), INC. 106 Northpoint Pkwy STE 400 Acworth, GA 30102 United states of America
- 🖀 +1 678 2360555
- Info-atlanta-ib@kendrion.com

INTORQ India Pvt. Ltd.
 India
 Plot No E-2/7
 Chakan Industrial Area, Phase 3
 Kharabwadi, Khed Taluka,
 Pune, 41051, Maharashtra
 +91 2135625500

Info-pune-ib@kendrioncom